AD-A019 385

MANPOWER PLANNING MODELS. 1IV. SYNTHESIS OF
CROSS-SECTIONAL AND LONGITUDINAL MODELS

R. C. Grinold, et al

Naval Postgraduate School
Monterey, California

November 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

o v fakriod £ AL
R A A S B T b T L il A S A 3 A

A et RS A 0t A A MR R A AL S TG b i




TR P g sarene bk Rt R
a0 Fub Y SR B e T sat G A E S Wl e Rt Gl e A

:§7 NPS55Mt75111

@ NAVAL POSTGRADUATE SGHOOL

Monterey, California

d i
P |
! ?
MANPOWER PLANNING MODELS - IV ;
SYNTHESIS OF CROSS-SECTIONAL AND LONGITUDINAL MODELS :
by i
R. C. Grinold
and %
K. T. Marshall
November 1975 ]
Approved for public release; distribution unlimited.
Prepared for-
Navy Personnel R&D Center
San Diego, CA 92152
Foproduced by
NATIONAL TECHNICAL ;
INFORMATION SERVICE %
e O B 4

b VR S Skt S aauyt




Rear Admiral Isham '.191de.
Superintendent

This work was supported in part by the Navy Personnel R&D Center, San Diego,
Office of Naval Research ard the Manpower Planning Division (MPI20) of the Marine

Corps.

Reproduction of all or part of this report is authorized.

Reviewed by:

\
QM/ -
/
| Mady
id A. Scihfadv, Chaipman
Department of Operatiofs Research
and administrative¢ fciences

NAVAL POSTGRADUATE SCHOOL

Monterey, California

Released by:

Prepared by:

| gy W»vLD)\

Kneale T. Marshall

<
R.C. Coriold (Aoyet)

R. C. Grinold

Lt Do

Robert Fossum
Dean of Research

e

‘__‘-

AR A

AT NSRRI £

Jack R. Borsting
Provost




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
-y REPORT NUMBER 12 GOVT ACCESSION NO.J] 3 RECIPIENT S TATALDG NUMBER
NPS55Mt 75111 |
4 TITLE /and Subtitle) S TYyPt OF REP(RY &4 PE®:IGL . "VERED

Manpower Plaaning Mcdels - IV

Synthesis of Cross-Sectional and Longitudinal e N SR

Models 6 PERFORMING ORG REPORT NUMBER

7 AUTHOR(w) B CONTRACT CR GRANT NUMBER(a,

R. C. Grinold A
W. T. Marshall

S PERFORMING ORGANIZATION NAME AND ACDRESS ' PRCGRAM E_EMENT PROUECT, TASK
AREA 8 WORK UN'” NUMBERS

Naval Postgraduate Schoo] A

Monterey, CA 93940 I NEF2Z1I7EWPREQQOR
’ +
' ZONTROULING OFFICE NAME AND ADDRESS 12 RFPH =" DATE
Navy Personnel R&D Center novesoer 1975
San Dit‘L’_O, CA gzlqz '3 NUMHBE® OF PAGES
4
T4 MONITORING AGENCY NAME & ADURESSCIf different from Controlling Office: 18 SEZURITY CLASS 'nf thie raport)
Unol. ssified
LT‘.A—"-.'_\.ASSI"iCATION DOWNGRADING

‘ UKEDQULE

16 DISTRIBUTION STATEMENT 7ol thie Report)

Approved for public release; distribution unlimited.

t7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 1{ different trom Raport,

18 SUPPLEMENTARY NOTES

‘9. XEY WORDS /Continue on raverae side I necesaary and identily by block number,

Manpower Markov Chains
Planning

Mcdels

Fiow

20. ABSTRACT (Continue on reverse side If necessary and identity by block number)

This report is the fourth in a series on Manpower Planning Models. Its
main purpose Is to compare the cross-sectional and longitudinal models
described in the second and third reports, point out their similarities
and differences, and present a theoretical comparison ~f the two types
of models.

DD . S%%, 1473 EoiTion oF 1 NOV 68 15 OBSOLETE UNCLASSIFIED
S/N 0102-014- 6601 | A
1 SECURITY CLAGSIFICATION OF TRIS PAGE (When Date Entered)

o S A DA S AR AR L




.'
i
i
“
-

AT

5%
.

by bttt s LR )
s 257 Sl bl A R GRS S A B bt R £k (Padein o i S iR 55 F e et
gl Eo i i L e S e WD

TABLE OF CONTENTS

Page

Introduction

Relations Between Cross~Sectional and Longitudinal Models 3

Two-Characteristic Cross-Sectional Models

Semi-Markov Flow Models 15

A Theoretical Comparison 26

Notes and Comments 40

111

a4s i

e [t R T R g
= e L e e P i e e B o gy 8 e e i e
LRt G sl ad b 4 &




IV. SYNTHESIS OF CROSS-SECTIONAL AND LONGITUDINAL MODELS

1. Introduction.

This chapter examines the relationships between the cross-sectional

models developed in Chapter II and the longitudinal models developed in

Crapter ITI. The longitudinal models allow more general flow processes Lo be

modelled, and any cross-sectional model is a special case of a iongitudinal

model. Although the longituidinal models are more guneral, they normally have

much greater data requirements and thus are mcre difficult to implement in

cases where the model coefficients are estimated from historical data. There-

fore we seek some compromise between the basic longitudinal and cross sectional

models.

The chapter begins with a brief sectiu demonstrating some relationships

between the two models. Sections 3 and 4 present hybrid models that use cross-

sectional data yet ':ave some longitudinal characteristics. Section 3 describes
two characteristic models. These large cross-sectional models have a special
structure which allows for simple calculations and modest data requirements.

Section 4 conslders semi-Markov models which are a straight forward extension

of the cross-sectional model. We find that the special structure of the semi-

Markov model yields some useful approximaticns. Finally, sectior 5 is devoted
to a theoretical analysis of the longitudiunal model and the analysis of errors
caused by using a best approximaring cross-sectional model.

In this chapter we modify our previous notational conventions. When it
simplifies the exposition we assume that the longitudinal matrices P(u) will
have index wu for all u greater than or equal to zero.

In previous chapters

we assumed that P(u) = 0 for u > M. This case is still included of course,

but allowing u to range over all positive values often simplifies the limits

on summations in complicated expressions. We also use the probabilistic




interpretations of the cross-sectional and longitudinal models. With the
exception of section 5 all the arguments could be reworded in terms of fractional
flows. However, the use of the probabilistic nomenclature eases the discussion

and simplifies some of the arguments.
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Relations Between Cross-Sectional and Longitudinal Models.

This section contains an analysis of the relations between cross-sectional
and longitudinal models. It starts with the introduction of an expanded classi-
fication scheme which connects the two models. This leads us to examine several
practical considerations in class expansion. A detailed theoretical analysis of
model comparison is given later in section 5.

In order to use the cross-sectional models described in Chapter Il one must
first select a suitable manpower classification scheme. In general one selects
the cimplest scheme that will answer specific irteresting questions, and stay
consistent with available data. It may be helpful to expand the clascification
scheme to develop a more realistic model of the flow process.

The cross—sectional data found in most organizaticns often contains limited
longitudinal information. For example, in a faculty promotion model such as that
described in II.8, the data on individual faculty members probably contains,
in addition to current rank, the length of time in the organization, or length
of time in the current rank. This data o{ten indicates how a simple classifi-

cation scheme, such as rank, can be expanded to more realistically model personnel

flows. We exploit this idea below, but first we see how a general longitudinal

model can be rearranged and thought of as a cross sectional model.

Recall from the general longitudinal model in I11.2 that the input flows
on chains 1 through K in period t are given by the K-vector g(t), and the
maximum number of periods spent in the system is M + 1. Suppose that we define
a class to be a combination of chain-type and period of en.ry. Then we have
K x (M+ 1) classes. Let the "stocks" at time t be given by the K x (M + 1)-

vector of past chain input flows [g(t), g(t-1),...,g(t-M)], and Q be a




K x (M + 1) square matrix with zeros except for 1's on the K-th lower dingonat.

If 0 represents a K ~ X zero matrix, and I a K » K identity matrix,

then for M = 3, - =
0 0 0 0
1 0 0 0
LA R R
0 0 [ 0
v ]

Let f(t) be a K+ (M + l)-vector whose first K elements are g(t) and the

remainder all zeros. Then
s(t + 1) = Qs(t) + f(tv)

and we have a cross-sectional formulation. However, the model is simply a
reorganization of the general longitudinal model. We now .o uk at some particular
cases of more interest.
Suppose P(0) is a given (N = K) matrix and P(u + 1) = QP(u), where

. . . u+1 .
0 dis an N ¢ N matrix. Then, for all u, P + 1) =0 P(0), and using
equation (4 ) in 1i1.2,

(e 4]

PO g(t) +Q T " IR(oja(t - w)
u=l

s(t)

(1)

= Q0s.t - 1) + P(0)g(t)

This is a cross-sectional model with f(t) = P(Q)eg(t).

A converse to this result is also true. Suppose s(t) - P(0)g(t) = Qs(t )

for any values of g(t - u), u > 1. Then we must have P(u + 1) = Qu+1P(O).

To see this set g(t - u) = 0, except when u = k. Then s(t - k) = P(0)g(t - k) }
and s(t) = P(k)a(t - k) = QkP(O)g(L ~ k). Since g(t - k) 1is arbitrarv. i
we must have P(k) = QkP(O). Thus we have shown the longitudinal and cross- %
seciional models are identical if and only if f(t) = P(0)g(t) and P(u + 1) = 3
Qu+lP(O) for alt u 2 O. f
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Problem L: If P(u + 1) = Qu+1P(0), and the maximum number of periods in the
system is M + 1, what limitations does this place on the structure of Q?
Returning to the expansion of the classification scheme suppose that
we have a longitudinal model with N classes, and maximum time in system equal
to (M + 1) periods. A class is now redefined to be a combination of an original
class i and a length of completed service u. Thus there are N x (M + 1)
new classes, and the stocks in these classes are given by the vector [si(t;u)],
for 1 =1,2,...,N, ard u = 0,1,2,...,M. Consider first the special case
where the number of original classes N 1is equal to the number of chains K.
Thus the matrices P(u) in the longitudinal model are each square.
Define qji(u) as the fraction of those in original class i with u
periods of completed service, who move to original class j in one period. Then

for each k= 1,2,...,K,

N

o+ = ] g ey ),

i=1

or
P(u + 1) = Q(u)P(u)
If P(u) has an inverse, then
Qu) = P(u + 1)P) ™Y for u=0,1,...,M - 1

In this case, the cross-sectional model is

s(t + 1;0) = g(t +1) ,

s(t +1; u+ 1) = Q(u)s(t;u) u=20,1,...,M -1 .

Example 1:

In the one class one chain model (K =N = 1) we have q(u) = p(u + 1)/p(u).

If p(0) =1, and p(u) 1is nonincreasing, then O < q(u) £ 1. The numbers




q(u) are commonly called continuation rates, since q(u) gives the fraction -

of people who continue in the system for at least (u + 1) periods, given that ?"

thev have been in the system u periods.

More generally,when N # K, we can choose Q(u) so that Q(u)P(u)

li approximates P(u+ 1). This can be accomplished 1if, for each j = 1,2,...,N,

we solve the quadratic minimization problem:

Minimize

N 155
= - + 0 2
Vi izl qji(U)pik(U) pjk(u 1) i

: A
3 The matrix Q(u) which solves this problem is given by 5

Q(u) = P(u + 1)P(U)+ s

)
where P(u)  1is the generalized inverse of P(u). However, there is no guarantee

((u) will be nonnegative with column sums less than one.

We close this section with a practical discussion of how a model with

longitudinal features can be modified to seem mor: like a cross-sectional model.

It seems best to establish t'is point by example.

Example 2: Consider the three class cross-sectional faculty model in example

1 of TI.3. Given an individual enters class 1, the individual can move eventually

: to class 0 or 2. The expected duration in class 1 is ] If we ask for

—q 5
4 11 b~
B the expected duration conditioned on moving to class 0 (is not given tenure) g

the answer is still L .

= The same answer will be obtained if we ask for the

ll ‘. -
expected lifetime in class 1 given eventual promotion to class 2 (is given tenure).

The Markov model treats a visit to class 1 as a two-stage process, as 1is illustrated

in Figure IV.1.



-9

x.: Class 1 oo Reclassify

g a9y Class 2
9%

?bi Figure IV.1. 1Illustration of Markov Model in Example 2.

i i At the first node, the individual either stays in class 1 or not and the

o1

expected number of periods at class 1 is independent of the reclassification process.
Suppose we know that the lifetimes of individuals in class 1 are dependent
hf on their eventual status. Let TO be the expected lifetime in class 1 given an

eventual wove to class 0, and T, be the expected lifetime in class 1 given an

eventual move to class 2. We can construct a four class cross-sectional model that

has these rharacteristics:

New Class Old Class

Nontenure who leave

1. Nontenure
Nontenure who move to tenure

Tenure Tenure

Retired Retired
The new system will be distinguished by a

§(t - 1) + f(t)

We assume that



This expanded model makes the distinction we wosire In {fre spent .n nontenure,

and 1t also tells us the fraction of professors in nontenure taat eventu.illy acquire

tenure, namely éz(t)/(él(t) + §2(t)).

.; .
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3. Two-Characteristic Cross-Sectional Models.

This section examines cross—-sectional models with two dimoznsionsl state spaces

using the probabilistic interpretation preseuted in II1.9. Assumptions on per-

missible flows between states lead to a special structure, and this in turn allows

simple calculation of quantities such as projected inventories and lifetime in each

classification.

The key to the special structure is the organization cf the classification

gscheme. The classes (or states) are defined in terms of two characteristirs,

(1,3), where the first characteristic (henceforth FC), i, runs over the indices

1 through N. The range of the second characteristic (henceforth SC), j, depends

on the FC. Let S be the set of all possible classes, and S(i) = {j|(i,j)eS}

be the set of possible SC's given that the FC is i. Let lS(i)l be the

number of elements in the set S(i).

At tim2 t an individual's class can be described by a random variable X(t).

The cross~sectional assumption assures us that knowledge of X(t) 1is sufficient

for prediction of X(t + 1), X(t + 2), «ctc., without knowledge of X(t - 1),

X(t - 2), etc. To obtain the special structure of the two characteristic model

we impose limitations of the allowable transitions between classes. II the current

FC 1is 1, the only allowable moves in one period are
(1) to classes with FC still equal to i,
or {ii) to classes with FC equal to i + 1.

Example 3: Let the FC reprssent length of time in system and SC the grade of

an individual. Consider tre four grade student example with grades j = 1,2,3,4,
for freshman, sophomore, junior and senior respectively. Clearly in each time

period the first characteristic increases by 1. Let the maximum time in the system

be 5 years (1 year = 1 time period), and let the sets of classes be




i S(1)
1 {1}

2 {1,2}
3 {2,3]
4 {3,4}

S {4,5}

This is an example of the 'LOS/GRADE' model. Note that N = 5, anpd Is] = 9.

Problem 2: List all the chains which would be Fresent if example 3 were re-formulated
as a longitudinal model. =
Since the two-characteristic model is of the cross-sectional type it must

be defined by a transition matrix Q, where Q is square with each dimension

equal to IS]. We consider the two types of allowable flow separately,

(1) No change in FC 1.

ko e gy

Define for each j and m in S,

e T

Ui (1) = PIX(c + 1) = (4,m) [X(t) = (1,7)]

b

and let Q(i) be the lS(i)! by ,S(i)] matrix with (m,j)-th element equal to

qm’j(i). :

(i1) Change from FC i to FC (i + 1),

PN ey

Define for each m 1in S(1i + 1) and each j in S5(1),

%JU=PH&+1)=H+IMHMU=(Lﬁ]

?

and let P(i) be the [S( + 1)| x |5(1)|

matrix with (m,j)-th element equal

5
to pmj(i).
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The Q matrix is given by (fo:- N = 4)

Q1) o 0 o |
P(1) Q(2) 0 0
(2) Q= 0
0 P(2) Q(3) 0
| 0 0 P(3) Q(4)_

where the 0's are matrices with all elements equal to zero.

Fxample 4: Continuation of example 3.

Since the LOS must increase by 1 each year all the (i) matrices are zero

matrices. Thus Q has the structure

0ojlo o}jo oj0 o0}o 0]
«x]0 o]0 o0lo olo o
x| 0o o0]o o]lo oo o
ofx x]o olo o]0 o
Q = olo x]o o]lo oo o
0lo olx xlo olo o
0o/lo 0,0 x]o o]o o
olo olo olx xlo o
__OIO olo olo oo 0

where x indicates a (possibly) non-zero element. The partitioning is included

to help the reader identify the P(i) matrices.
Example 5: Re-formulation of example 3.

Suppose that the FC represents the grade of an individual in a system where
no demotions can occur and in which a person cannot advance more than one grade

per year. Let SC represent the time spent in the particular grade. This is

called the 'GRADE/TIME-IN-GRADE' model. Let the grades be 1) freshman, 2) sophomore,

= i b b 9 e i e L L e e e e it i
el kgt i Rt R A b Ve st ol tb b s o PP B [y it erd TR v TR ]
i g G SR ¢ " A 5 £ g 3
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3)junior and 4) senior, and let the maximum time in each grade be 2 years. Thus

we have
i S(1)
: 1 (1,2}
2 {1,2}
3 {1,2}
4 4 (1,2}

Note that N =4 and |~ = 8. Now the Q matri: has the structure.

where again x 1indicates a(pu~sibly) non-zero element.

4 Example 6: Re-formulation nf example 3.

Suppose that the FC represents the grade of an individual (as in exarple 5)
e 1n a system with no demotions and no double or multiple promotions per period.

Let the SC represent the time in the system, or length of service (L0OS). This
i is called the "GRADE/LOS' model. Let the grades be 1) freshman, 2) sophomore,

*5 3) junior and 4) senior, and let the maximum time in the system be 5 years, with




PIRPERLAY

R gnut o L o) iy

AR PO L

HXa i

1 {1,2}
2 £2.81
3 {3,4}
4 {4,5})

Note that N = 4 apd |5] = 8.

0 0,0 0'0 x'x o

. ‘ .
All the above examples display the special structure

in (2). Recall from Chapter T1 that many applications of
model require calculation of the inverse (I-Q)

the Q matrix in the two-characteristic mode

to calculate D in terms of the

D(1) = (I-Q(1))" ! for each FC 1.

D(1) 0
D(2)P(1)D(1) D(2)
0T D(3)P(2)D(2)P(1)D(1) D{3)P(2)D(2)
D(4)P(3)D(3)P(2)D(2)P(l)D(l) D(4)P(3)D(3)P(2)D(2)

inverses of the smaller submatrices.

Now the Q matrix has the structure

the cross-sectional

: which we called D. Although

Then (for the case N = 4),

0
0
D(3)

D(4)P(3)D(3)

Define

1 is often quite large, it is easy

of Q which is depicted

0
0

D(4)

_

NPT FOR R R, T




Thus D 1s coapletely deterwmined by the matrices D(i}, { =1,...,N, and P(i), }
i=1,2,...,N -1,

Computations in forecasting are considerably reduced by taking z2dvantage of the
special structure. Let si(t) be the vector of stocks at time ¢t with FC 1.

Thus si(t) is a lS(i)I vector. Then the stocks at (t + 1) are given by
E o~ = + = 1 = 0,00
& Si(L + 1) Q(i)si(t) P (4 1)si_l(t) + fOi(t + 1), 1=2,...N

where toi(t) is the vector of input flows in period t with FC i. The total

stocks at (t + 1) with FC i 1is found by summine the elements of si(t + 1).

Problem 3: Let bmj(i) be the probability that, given the current state is 3
(i,j), the state entered on leaving S(i) 1is (i + 1,m). Let B(i) = [bmj(i)].

Show that B(i) = P(L)L(i).

Problem 4: L.t bmj(k;i) be che probability that, gi.cn . ‘e current state is

(1,j), the state entered when S(k) s entered '+ (k,m). Let B(k;i) = [bmj(k;i)],

an |S(k)| by |S(1)| matrix. Show that B(i) = B(i + 1;i), and that for k > i+1

B(k;1) = B(k - 1)B(k-2) ... B(i).
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4, Seni-H;rkov Flow Models.

A simple longitudinal model that retains some of a cross-sectional model's
useful properties is the semi-Markov model. This section presents the general
ideas behind such a model and indicates how some useful quantities can be calculated
or approximated without completely specifying the flow process. We use terminology
from probability theory to present the model, but the reader should recall that it
is not necessary to view the model in a probabilistic sense. Although it can be
viewed as a deterministic flow process we find the exposition easier and smoother
using Markov chain terminology.

Consider a system with N classes of manpower. When an individual enters

class 1 we say he commences a visit to class i. Let (u) be the probability

qji
that a visit to class 1 1lasts u perioc. and finishes with transition to state
j. As in earlier chapters class 0 is interpreted as outside the system,

and since a visit to any class is assumed to be at least 1 period in length,

qji(o) = 0.

The probabilities q,  (u), i =1,2,...,N, j =0,1,2,...,N, u=1,2,...,

ji
form the basic data of the model, and from these the following interesting
quantities can be calculated:

(1) the probability that class j will follow class 1,

a;; = L oa@
ji u=1 ji
(i1) the expected length of a visit to class 1, given j 1is the next

class visited,
TR R T LT

(111) the expected length of a visit to class 1,

N

ui " jZO ujiqji ]
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E Problem 5:
and

Example 7:

5.

Assume

and that no

by (blanks indicate zeros):

the probability of spending more than u periods in class 1,

w N
h,(u) = ) Yoq. (),
1 v=u+l j=0 i1

(v) the variance in the length of a visit to class

next class visited is j,

(vi) the variance in the length cf a visit to class

o N
2
. YOl (- “i) q.i(U)
u=1l j=0 J
Show that
=L
My L hy(w),
u=0
2 2 -
oi + Ui - ui = 2 E uhi(u)
u=0

2
(u - “ji) qji(u)/qji ,

i, given that the

i,

Consider a student enrollment model with the following 5 states:

Freshman

Sophomore

. Juniors

Seniors
Degree winners (graduates).
that the only transitions possible are from 1

state can be held for more than three periods.

to either (i + 1) or 0,

The basic data are given
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| 1 2 3 4
N | &
97 (W) 0.15 0.10 4

q21(U) | 0.65 0.10 o>

4, () 0.10 0.05 0.01 4

a,, (u) (.70 0.10  0.04 §

pya

q03(u) 0.15 0.05

45 () 0.75 0.05 ;

qOA(U) 0.05 r}
ag,, (u) 0.90 0.05 %
1 Gos (1) i 1.00 %

; By using (i) it is tasy to calculate the 6 * 5 matrix of probabilities &

[qji]' These are: ;

0 3 0.25 T 016 0.20 0.05 1.00

2 0.75

3 0.84

4 0.80 ‘

5 0.95 ?

e

4 Notice that the elements in cach column sum to 1.00.

-
3
1 N
3 3
B
. ]
Al
. ;
i i
i 3
. 1
i 1
E >
b, 3
: '
<
A
3
o i
,.
‘A
3
;
o
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By using (ii) the expected values [uji] are
SN ]
N 1 2 3 4 5
IN
0| Lo 1.44 125 1.00 1.00
| ‘
i |
! !
l 2 1.13
i
% 3 | 1.21 |
L ’
, b ! 1.06 ;
| ]
5 1 1.05 !

From this table we sec that, given a student will become & junior, the
expected time he spends as a sophomore is 1.21 periods. Given he is to leave

after being a sorhomore, the expected time spent as a sophomure is 1.44 periods.

By using (v) the variances [031] are

r—-—— I

IR U 2 3 4 5

i l
0§ ML.es 0.37 0.19

E

T
2 ‘ 0.12 f
B 0.26 b
4 n.06

ta 0.05 ;
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The semi-Markov model can be viewed as a cross-sectional modal with a two-

characteristic state space (the reader should veritv that the converse is not

true). Suppose that a new state is defined to be a rcmbination of an original
state 1 and the number of periods spent In that state, u. Then an individual
in state (i,u) moves next either to state (j,0),

with probability

qji(u + 1)/hi(u), or to state ({,u + 1) (remaius in the same "original state')

with probability hi(u 4 l)/hi(u).

Q matrix given by

P

To

(1,0)

Shiv oo

(1,1)

(2,0)

Rancons e el

(2,1)
(2,2)
(3,0)
1 (3,1)
(4,0)
1 (4,1)

(5,0)

(1,0)

(1,1

(2,0)

Example 8: Continuation of example 7.
E In this student example there are l0 states with a cross~sectional model

From

(2,1) (2,2)

(3,0)

0.20

0.65

0.50

0.20

0.70

0.25
0.50 0.80
0.10

0.75

(3,1)

(4,0)

(4,1)

(5,0)

0.50

0.05

0.90

1.00

Problem 6:

In terms of the GRADE/TIME-IN-GRADE model described in Section 3,

3 partition the matrix in example 8 to find the

find the inverse matrix D = (I—Q)—l.

Q1)

and P(i) matrices, and

Interpret the result.
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The semi-Markov model can also be viewed as a longitudinal model, but in
order to do this we must identify the chains. Chain k in the longitudinal
interpretation corresponds to state k 1in the semi-Markov formulation. An

individual is appointed in chain k 1f and only if he enters the system in

state k. Recall from III.5 that pik(u) is the probability that an individual

who enters on chain k 1in some period t will be in class i at rtime ¢t + u.
By using conditional probability arguments, when k 1is different from i

we obtain from the semi-Markov assumptions,

pik(u) =0 if u=0

u N

) 2 p,.(u-v)q,, (v} if u=21.
v=] j=1 1] Jks

For the case 1 = k we have

pii(u) =1 if uw=20,

N

u
hi(u) + Vzl jzl pij(u-v)qji(v) , If ugz21.,

Now let H(u) be an N x N matrix with off-diagonal elements equal to zero,
and i-th diagonal element equal to hi(u).
Also let P(u) and Q(u) be N x N matrices with (j,1)-th elements equal

to pji(u) and qji(u) respectively. Then the above equations can be written

in the matrix form
u
(3) P(u) = H(u) + ) P(u - v)Q(v), u=>0.
v=0
Since Q(u) contains the basic data of the semi-Markov model, and since H(u)

is calculated from this data using (iv), the longitudinal model matrices P(u)

are completely determined by solving (3).

- ‘.;,‘.-
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Example 9: Continuation of example 8.

For the student example the values of pij(u) for 1 =1,2,3,4,5, and
u=20,1,2,...,9 are given by (to 2 significant figures)

N u

}\\\> 0 1 2 3 4 5 6 7 8 9
1 l 1 0.20
2 E 0.65 0.23 0.05 0.01 i
3 ‘ 0.46 0.18 0.05 0.01 l
4 ‘ 0.34 0.14 0.02 ‘
5 } 0.31 0.13 0.04 0.01 |

Blank entries represent zero's or numbers less than .005.

Problem 7: Based on example 9 above.
a) Given that an individual enters as a freshman, what 1s the probability
of graduation.
b) Given that the entering freshman eventually graduates, what are the
mean and variance of the number of years spent as a student?
c) Given that the entering freshman drops out, what is the mean and variance

of the number of years spent as a student? =

If all the basic data (the qij(u)‘s) are known, equation (3) shows that
the longitudinal model matrices P(u) can be calculated and all the results

of Chapter III follow. Often the detailed transition probabilities are not known,

and only estimates of the means and variances uij and cij can be obtained,
together with the qij's. Even with this limited data it is often possible to

obtain approximate results for the equilibrium behavior of the system.

Recall that L = |} P(u), and let H= ) H(u), and Q= ] Q(u). The
u=0 u=0 u=0

equations in (3) can be written out as
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P(0) = H(0)

P(1)

H(1) + P(0)Q(1)

P(2) = d4(2) + P(1)Q(1) + P(0)Q(2)

P(3)

H(3) + P(2)Q(1) + P(1)Q(2) + P(0)Q(3)

etc .

Summing these equations and using the above definitions we get

L=H+1LQ,

or

L = H(I—Q)'l .

Now H is the sum of diagonal matrices and is itself a diagonal matrix with

(1,1)-th element equal to Hy (see problem 5). Let D = (I-Q)-l. Then dik

1s the expected number of visits to state i given that the system was entered

in state k. Thus
e = Mgy s

where Qik is the expected number of periods spent in class i, given the system

was entered on chain k. TIf a stationary vector g gives the chain inflows in

each period the steady state stocks will be

5 = Lg .

Example 10: Continuation of example 9.

For the data given in the student example,

o o
2R .




Problem 8: Based o0 cxample 10,

Problem 9: Show that, given you enter class k, the probability of ever reaching

Assume that you ¢nter this student group as a junior,
a) how many periods do you expect to attend?

b) what is the probability that you will graduate?

class 1 is dik/dkk' a

To continue with the steady state approximations consider next the case where
. . t
input flows are growing geometrically at rate (0-1). Thus g(t) = 6 g and from

equation 7 in TI! 4 the stocks inw period ¢ (t large) are given by




s(t) = 8'L(0)g ,

where
L(6) = ) 6 "P(u)
u=0
Now let 6_1 = §, and define
p(&) = § 'pqu) ,
u=0
H(S) = ) 6&"'H(u) ,
u-0
and . Pl
Q(8) = § 8 Qu) .
u=0

By multiplying theu-th matrix equation in (3) by s and summing over u we get

P(8) = H(8) + P(8)Q(s) .

Thus P(6) = L(8)

]

H(8) (I - Q(eN T .

For § close to 1 the basic approximation formulas (Appendix 1) can be used

for the elements of ﬁ(G) and 6(5). From these

qji(d) = qjiéuji(l + %?oii)
and
5 Wi az 2
h(8) = [1-6 Q+5a)l/A-6,
where

o = log_ 6, 6 = 1/6 .

Example 11: Continuation of example 10.

Let 8 = 1.03, so that &§ = 0.97. Then
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and

D(S) =

H(S)

P(6)

The actual values of

1.00

0.72

0.59

0.45

0.42

—
1.19

0.90

0.64

0.48

d2.42

P(S)

1.00

0.81

0.63

0.58

1.24

1.24

0.88

0.66

0.58

are very close to these approximations.

1.00
0.77 1.00
0.71 0.92
1.10

1.05
1.10
0.81 1.05
0.71 0.92

1.00

1.00

1.00

el




5. A Theoretical Comparison.

The stochastic interpretations of the longitudinal and cross-sectional
models developed in III.5 and II.1 are used In this section in a theoretical
comparison of the two models. Some data on student enrollment .s used to
illustrate the results.

Throughout this section we assume the longitudinal model is a valid descrip-
tion of the system's law of motion. Our intention is to construct a good cross-
sectional approximation to that model and then examine the quality of the
approximation. The actual approximation is time dependent and also depends on
past inflows. Moreover, it depends on data that is usually not available in
a longitudinal model. Nevertheless, the approximation does help us to describe
the rational limits of approximating a longitudinal model with a cross-sectional
model.

Recall that S(t) is an N-dim:wmnsional random vector, where Si(t) is a random
variable which gives the stocks in class 1 at time t. The expected stocks
in each class are given by the elements of s(t) = E[S(t)]. For a (possibly
nonstationary) cross-sectional model the conditional expected value of ~ S(t + 1)

given both the realized values of stocks S(t) at time t and the (experted)

e

inflows fo(t + 1) 1in period t + 1, 1is easily derived from equation (2) in

e

11.2. Let the superscript c¢ represent the "cross-sectional model.' Then

PRI o N ave

(4) ES[S(t + 1)|S(e) = x] = Q(t)x + EJle # 1) «

Note that we use Q(t) to indicate that the transition matrix can be non-stationary

from period to period.

The basic longitudinal mouel gives the unconditional expected values of

T IR TR

S(t + 1). From equation (4) in III.2.
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(5) E[S(t + 1)} = ] P(ulg(t +1 = u)
u=0

To compare the longitudinal and cross-sectional models we must derive an
expression for the conditional expectation ER[S(t < 1)[S(t) = x], where the

superscript £ denotes "longitudinal model." 1In order to determine this expression

some assumptions must be made on individual behavior and some results of probability

theory exploited.

The longitudinal model stipulates that each individual in the system is subject

to a stochastic law of motion that depends only on the individual's chain and

elapsed time in the system. In particular, the movement of any given individual

is independent of the movement of others.

With each individual who enters the system we associate a counting random

variable. Let

Ziéi(t - u,t) = 1 if individual j, who entered in chain k in period t - u
is in class 1 at time t,
= 0 otherwise,
Recall that gk(u) is the total number who enter in chain k in peri;d v. Then

the stock in class i at time t is the random variable

K - gk(t_u)

. _ i)
(6) s;(e)=3Y) J ) =z (t - u,t)
. k=1 u=0 j=1 L,k

4

’
E
:
£
td
g
!
i
e
4

The central limit theorem of probability theory states that under our assump-

tions Si(t) has approximately a normal distribution. Also the elements of the

N-vector S(t) are jointly normally distributed, and the elements of the 2N-vector

(s(t),S(t 4+ 1)) are also jointly normally distributed.

Now let b,, = Cov[Si(t),S

1 j(t)], where Cov indicates covariznce. Also

let cij = Cov[Sj(t),Si(t + 1)]. The matrices B and C, with (i,j)-th elements

equal to bij and s respectively, are N x N covariance matrices. From the theory of
. J

multivariate normal distributions we can now write down the expression for the

A RaiSarad S VAL e T b D,
ek i N s e e N St R
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; conditicyal €xpectation, namely,

7) EQ[S(t+l)]S(t)=x] = C(t)B_l(t)x + P(0)g(t+l) + [s(t+l)«(C(t)B_1(t)s(t)+P(0)g(t+l))].

This complicated expression reduces to

EIS(t + 1)|5(r) = x] = s(t + 1) + ()3 (t) [x - s(e)]

so that when x =

AL e

8(t), the forecast reduces to s(t + 1).

s L3 vy

Before we can compare the forecasts obtained in (4) and (7) it is necessary

to analyse the covariance matrices B(t)

and C{t). First consider B(t). Using

Lo S o

the expression 1. (6) with the definition of covariance one can show that

o]

K
2
biy(®) =s (t)y - 7 § , (u)g, (£ - u)
ii i u=0 Koy ik Sk

K

_.__Q H _
bij(t) = UZO 1 ij(u)pik(u)gk(t u) , for 1 # §

M(t)

be an N x N matrix with off-diagonal elements equal to 0 and

mii(t) = si(t). Let G(t — u) be a similar

K x K matrix but with gii(t -u) =

gi(t - u). Then the matrix B(t) can be written as

(8) B(t) =M(t) - | PG(t - u)P' (u)
u=0

Recall that the prime indicates matrix transposition.

We now turn to analyzing the matrix c(t).

Since cij(t) is a covariance

term between stocks in class 1 at time

t and stocks in class j at t+1

it is necessary to know the joint distribu:

ion of the class of an individual at

both t and t + 1.

Define

in vlass j at t+ 1 period t + 1 -y

k In class 1 at ¢ and entered chaln k in
fij(u) = Probh —_ .

Later in this section these joint probabilities are discussed in detail and related

to results in III.10.

Continuing with our analysis of C(t) it follows from
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this definition of f:j(u) that, if fij(t + 1) 1is the expected flow from

class i to class j in period t + 1,

R iauisl

o K
k :
g \ = =
g fij<t + 1) Z Z fij(u + l)gk(t u)

u=0 k=1
Using (6) and the definition of covariance it can be shown that

(9) Ct) = F'(t + 1) = § P (u+ 1)6{t - u)b(u)
u=0

b4

where F(t+l) 4is the N x M matrix of expected flows [fij(t + 1)]. Next, recall

that qji(:) is the fracti of those individuals in class i at time ¢t who

move to rlass j at t + 1. Thus

{ (10) qji(t) = fij(t + l)/si(t) ,
i or in matrix form,
3 (10) Q(t) = F'(t + )M T (¢)

Now clearly the stocks in class j at time t + 1 are given by the sum

of all flows into class j in period t + 1. Thus

I~

sj(t + 1) =

(t+1) + fo_(t + 1) .
5 L ;

£
1 1

Using (10) and substituting fcr the input chain flows,
K
)

N
sj(t +1) = izl qji(t)si(t) 3 L

In matrix form this becomes

(1) s(t + 1) = Q(t)s(t) + P(Qg(t + 1)



Equation (11) could have been obtained from (4) directly, tut by fallacious
reasoning. Recall that cur assumption is that the longitudinal model truly
describes movement through the system, whereas (4) is simply a cross-sectional

representation which approximates the true model.

By subtrac.ing (7) from (4) and substituting (11) one finds that

(12) ES[s(t+1) | s(0)=x] - EY[S(e+1) IS(e)=x] = [C(£)B™M(£)-Q(t)] (s(t)=x)

Equation (12) gives the one-period forecasting error caused by using the

cross~-%ection model in place of the longitudinal model. By taking expec-

tations on S(t) we see that "on the averaze" the expected error is zero in every

class.

In order to say more about the size of the discrepancy between the two models

it 1is necessary to know something about the magnitude of the entries in the matrix

[c(e)r () - Q(e)]. Let

D(t) = ) P'(u+ 1)G(t - u)P(u)
u=0
and

H(t) = ) PG(t - u)P'(u)
u=0

Then from (8) and (9) we have

B(t) = M(t) - H(t)

and
c(t) = F'(t + 1) - D(¢)

From these equations together with (10) it can be shown that

(13) c(e)B~1(e) - Q(t) = [Q(t)H(t) - D(t) 1B 1 (t)

T i R
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Problem 10:
a) Verify equation (13).

B) Show that if P(u + 1) = Q(t)P(u) for all u > 0, then C(t)B—l(t) -

Q(t) = 0 and the two models coincide. -

To investigate (13) further we consider the one class, one chain model with

constant input. In this case all matrices and vectors reduce to scalars,

g(t) =g for all t, and P(u) = p(u). Moreover

- g
H=g ] p(w)’, s=¥
=0

g ) plu),
u =

u=0

F=g¢g Z p(u) and D =g Z p(wp(u + 1)
u=1 u=0

Let ) = Z p(u), the expected lifetime of an individual in the system. Then
u=0
2 AY
(14) G -Dp=2 ] pw" [ pw+1;- ] plu+Dp@ [ pw)
u>0 u>0 u>0 ux0

The term in parenthesis in (14) is

I pw?m - 1) - a D opwpu+1) =2 § A(u+ L)plu) - ) p(w)? |
uz0 u>0 u>0 u>o

where A(u + 1) = p(u) - p(u + 1).

Interpreting p(u) as the tail distribution of a non-negative random variable,

say A for "lifetime,” one can show that

(15) L P -pWI = ] aw § pv), |
u>0 uz0 vu 3
and %
(16) Y [8(u) + ACu + 1)]p(u) =1 .
u>0

St L LN

Using (15) and (16) in (14) gives

2u

(17) QH - D =§ ) A(u)[z p(v) - (A)p(u):l :
u>0 v

A e s

=
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Let us assume now that the expected remaining lifetime of a person whose
time in the system exceeds u time periods is no more than the expected lifetime
A of a new input. We say that people have '"mean residual 1life'" bounded above
by the original mean life, and say that A has MRLA if

u=20,1,2,... for which p(u) >0 .

p(v) .
Z b (a) = A, all

v>u

Note that equality holds in this equation for the geometric distribution. Table
IV.1 shows that in a particular case of students attending the University of
California at Berkeley, (see Table II.15 also) this assumption is valid.

Under the MRLA assumption, from (17) we see that
QH - D <0 .
In the stationary case [QH - D]B—l[s - xJ 1is independent of t.

Since B_l is nonnegative, we have the following conclusions:

If we agssume A has MRLA,

a) If x <« s, the cross-sectional model under-estimates the value .of

E [s(t + is(c) = x].

b) If x > s, the cross-sectional model over-estimates the value of

E’?‘[S(t + 1)

s(t) = x].

Since S(t) has a marginal normal distribution we can say more about the
expected error in the one dimensional case. The error 1s a normal random variable
with zero mean, and variance equal to (QH-D)ZB_1 (where these are all scalars).
Thus we can say that with probability about .95 the error will lie in the Interval

(—2B-l/2|QH—D|, + 2B—l/2|QH-D|). The length of this interval increases as the
square root of g. However, s the expected value of S(t) increases as g.

Thus the interval length divided by s, or the fractional error range, decr~ases

Lop e s el s S e A e MR o i AN AL E b et dds ISR S S e an il doa
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ﬁ
E Lifetime
E (semesters) Pr{p>u] = p(u) Y p(uw) z p(u)/p(v)
u v>u v>u
1 0 1.000 6.959 6.96
Q 1 0.972 5.959 6.14
¢ 2 0.905 4.987 5.52
3 3 0.756 4.082 5.42
4 0.684 3.326 4.86
5 0.593 2.642 4.47
6 . 0.562 2.049 3.65
7 0.524 1.487 2.84
8 0.498 .936 1.88
9 0.199 465 2.34
10 0.130 .266 2.05
11 0.050 .136 2.72
12 0.036 .086 2.39
13 0.017 .050 2.94
14 0.015 033 2.20
15 0.011 .018 1.64
16 0.007 .007 1.00

Table IV.1l. Mean Residual Life of Freshman Students Entering
U.C. Berkeley in Fall Semester, 1955.

as the square root of g. So as g increases, and hence s increases, the width
of the confidence interval of error increases much more slowly. To illustrate
this we use the lifetime distribution from Table IV.1l, and for various cohort
sizes we show how the interval length changes. The results are given in Table
1V.2. It is clear from this table that even though the lifetime distribution
differs considerably from a Markovian (geometric) distribution with the same

mean, the confidence intervals on the forecasting erior are extremely small
relative to the expected number in the system. For comparison p(u) 1is drawn

in Figure 1V.1 together with a geometric distribution.
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1955 UCB students (2126)

Expected Lifetime X = 3.5 years

Figure TV.1. Comparison of

7 8 9 10 11 12 13 14 15

Semesters (u)

| | ] W

for UCB Students with a Geometric Distribution.
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Cohort Size Confidence Interval

”?Q% g B SlNe for Forecast error
"; : 1000 6,959 (-7,7)
2000 13,918 (-10,10)
i
-4 3000 20,877 (-12,12)
‘9 4000 27,836 (-14,14)
Table IV.2. 95% Confidence Intervals for Various
Cohort Sizes.
i ;ﬁ Determination of properties of the matrix in (13) for the multi-class, multi-
: ; chain case is much more difficult than in the one-class, one-chain case. A 4-class,
] 4-chain numerical example is given which uses the student enrollment data from
Table III.3, and assuming constant cohort size input.
: ié The forecasting error given by (12) has a multivarjate normal distribution
o'“; with mean 0 and covariance matrix (QH—D)(B—l)'(QH—D)'. Using the data given
%' : in Table III.3 for freshmen, sophomores, junior and seniors at the University
“L f of California, Berkeley 1955-1969, calculations were made assuming constant
' f cohort sizes of 3000 freshmen, 700 sophomores, 1300 juniors and 150 seniors entering
}b':{ each fall semester. These figures are approximately what the Berkeley campus had
e

been exp-~riencing in its fall new admissions.
Table IV.3 gives the matrix B, whose (j,i)th element is the covariance of
Si(t) and Sj(t) for some t. Also included is s, the vector of expected

stocks in each class.
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lass 1
Freshmen Sophomores Juniors Seniors

Class j
A Freshmen 673 -454 =30 ~-10
Sonhowores =454 1453 -380 ~43
1 Jun .ors -30 -380 2137 -535
Seniors -10 =43 -535 2216
BEpeieted 3868 B4 4687 3227

Values

Table IV.3. Covariance Matrix B for the 4-class example.

The variance of the number in each class increases as the class increases,
and all classes are negatively correlated.
i

Table IV.4 gives the matrix (QH—F)B— QH-F)', which is the covariance

matrix of the forecasting error. It can be seen that these numbers are very
5 small compared to the size of the predicted values, as was found in the single

state case.

Class i
: Freshmen Sophomores Juniors Seniors
% Class j
i3 Freshmen 6.7 2.2 -22.4 -5.4
g Sophomores 2.2 1.0 -8.5 -2.7
i Juniors ~22.4 -8.5 82.2 29.5
: Seniors 5.4 2.7 29.5 41.8

@f Table IV.4. Covariance Matrix of Forecasting Error.
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The matrix (QH-D)B—l is given in Table IV.S5.

lass 1 B
Freshmen Sophomores Juniors Seniors :

(g i T e (e U TR el STy
.
LY

Class j
Freshmen .068 .013 .002 .001
é Sophomores -.041 -.003 .003 .001
% Juniors .290 -.062 -.030 .029
Q Seniors .040 -.046 ~.125 .032

Table IV.5. (QH—D)B*1 for the 4-Class Example.

This is an example where (QH-D) 1is neither :» nor < 0, wunlike the
one—-class, one-chain model.

Even though movement through the system is far from that represented by a
stationary cross-section model (i.e., P(u) # Qu for some Q), when constant cohort E

sizes are used the cross-sectional model pives essentially the same prediction as

the more complex cross-sectional model. However, the longitudinal model is primarily 2
. . br:
formulated for fcrecasting under conditions of controlled input. This is often the 4
situation when policy changes are implemented, and under such conditions the sizes l%
+

of cohorts is successive time periods can and do vary considerably. For example,
the freshmen cchorts in the fall quarters at Berkeley in the period 1966-1969 are
shown in Table IV.6. This was a period when total campus enrollment was controlled,

and new students entered only to f£ill available room.
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Date Cohort Size
Fall 1966 3,053—_—
Fall 1967 3,303
Fall 1968 2,239
Fall 1969 1,883

Table 1V.6. Freshmen Cohort Sizes at U.C. Berkeley

One can scee that, since F(t) and s(t) are both functions of previous
cohort sizes (up to period ), that the cross-sectional transition probabilities
will change with time, ang that estimating them from cross-sectional data in two
consecutive vears will not account for gross changes in cohort s,-e«s,.

We end this section with a b: itef discussion of the joint prooabil.:iies fij(u)
and their connection with the flow parameters pik(u) in I1I.10 (longitudinal
conservation).

First it is easy to see that if u = 0, then fgj(O) = pjk(o)’ and for 1 # 0,
fij(O) = (0. These relations follow directly from the definitions. MNext, since any

. k .
individual who lcaves the system cannot return, for j and u 21 foj(u) = 0.

Also, by looking at the flows into some state j 1in period u it fcllows that

‘i K
p., (u) = £, (u)
jk jop 13

Similarly, by looking at flows out of some state i in period (u + 1),

S
pik(u) = jg-o fij (u + 1).

Y SO R s
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Thus the {pik(u)} are the marginals of the joint probabilities {fi

j(u)}. In

many applications the {fij(u)} are hard to measurz and it would be advantageous
if they could be estimated from the {pik(u)} which are relatively easy to measure.

In general the marginals do not determine the joint distributions.

k
ij
k
g =
pik(u)pjk(u # 1). Since people who leave cannot return, foj(u) 0 for all u.

Problem ]1: The longitudinal model would have serial independence if f, (u + 1) =

Use this to prove that we cannot have serial independence in the longitudinal model.
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6. Notes and Comments.

T Y T T )

The material in section 3 is based on Hayne [1974] and Hayne and Marshall [1974].
This type of model makes it possible to work with a highly disaggregated manpower

classification schemc and still have some control over the interpretation and mani-

T S T T

pulation of the model.

. The semi-Markov model of section 4 is new. The reader may consult Ross [1370],

4 and references cited there, for a decription of semi-Markov models. Austin [1971]
and Bartholomew [1973] discuss semi-Markov models. The treatment in section 4 is

quite different. We stress approximations that can be obtained from the transition

probabilities, and the first two moments of the length of a visit.

e

Section 5 is based on Marshall [1973]. It reveals the underlying structure

of the longitudinal medels and reinforces the theoretical notions derived in section

10 of chapter III.
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